# Equidistribution theorem.
Let $(x_{n})$ be a real sequence in $[0,1)$. We say $(x_{n})$ is **equidistributed** in $[0,1)$ if for any interval $[a,b) \subset [0,1)$, we have
$$
\lim_{ N \to \infty } \frac{1}{N} \#\{n \le N: x_{n} \in [a,b)\} = b-a.
$$
That is to say, the fraction of sequence that lies in the interval $[a,b)$ is $b-a$.
Note, we have an equivalent definition:
> For $(x_{n})$ a real sequence in $[0,1)$, $(x_{n})$ is equidistributed in $[0,1)$ if and only if for all $b \in [0,1)$,
> $$
\lim_{ N \to \infty } \frac{1}{N}\#\{n \le N : x_{n} < b \}=b $$
$\blacktriangleright$ Indeed, fix a real sequence $(x_{n}) \in [0,1)$. If for any $[a,b) \subset [0,1)$ we have
$$
\lim_{ N \to \infty } \frac{1}{N}\#\{n\le N : x_{n} \in [a,b)\} = b-a,
$$
then for any $b \in [0,1)$ we take $a =0$ and get
$$
\lim_{ N \to \infty } \frac{1}{N} \# \{n\le N : x_{n} < b\}= b-0=b.
$$
Conversely, if for any $b \in [0,1)$ we have
$$
\lim_{ N \to \infty } \frac{1}{N} \# \{n \le N : x_{n} < b \} = b,
$$
for any $[a,b) \subset [0,1)$ we have
$$
\begin{eqnarray}
&&\frac{1}{N} \# \{n\le N : x_{n} \in [a,b) \} \\
&=& \frac{1}{N} \# \{n\le N : x_{n} < b \} - \frac{1}{N}\# \{n\le N : x_{n} < a \}.
\end{eqnarray}
$$
So taking limit as $N \to \infty$ we have
$$
\lim_{ N \to \infty } \frac{1}{N} \# \{n \le N : x_{n} \in [a,b)\} = b - a. \blacksquare
$$
A classic result is one of Weyl's,
> **Weyl's equidistrubtion theorem.**
> Let $\gamma$ be any irrational number. Then the sequence $(x_{n})$ with $x_{n} = n\gamma$ is equidistributed in $[0,1)$.
Let us try to prove this.
## Some preliminary results.
For any real number $x$, denote $\lfloor x \rfloor$ to be the greatest integer not exceeding $x$. And denote $\left< x \right> = x-\lfloor x \rfloor$ to be the fractional part of $x$. Note that $\left< x \right> \in [0,1)$ for all real $x$.
Note if $x \in \mathbb{Z}$, then $\left< x \right> = 0$ and $\left< -x \right> = 0$.
However if $x \not\in \mathbb{Z}$, then $\left< -x \right> = ?$
Let us think. If $x \not\in \mathbb{Z}$, then $x = \lfloor x \rfloor + \left< x \right>$ with $\left< x \right> \in (0,1)$. And
$$-x = -\lfloor x \rfloor - \left< x \right> = -\lfloor x \rfloor -1 + (1 -\left< x \right>)
$$
with $(1-\left< x \right>) \in (0,1)$. So $\left< -x \right> = 1- \left< x \right>$.
Now, note if $x-y \in \mathbb{Z}$, then $x = y +m$ for some $m \in \mathbb{Z}$. So $x = \lfloor y \rfloor +\left< y \right> + m$, and so $\left< x \right> = \left< y \right>$. So $\left< x-y \right> = \left< x \right> - \left< y \right> = 0$.
Now take any two real numbers $x,y$. What is $\left< x-y \right> = ?$
If $\left< x \right> \ge \left< y \right>$, there are two cases.
If $x-y \in \mathbb{Z}$, then $\left< x-y \right> = \left< x \right>-\left< y \right> = 0$.
If $x-y \not\in \mathbb{Z}$, then we have $x-y=\lfloor x \rfloor + \left< x \right> -\lfloor y \rfloor -\left< y \right>$. So $\left< x-y \right> =\left< x \right> - \left< y \right>$.
If $\left< x \right> < \left< y \right>$, then we cannot have $x-y \in \mathbb{Z}$. So $x-y \not\in \mathbb{Z}$, and we have $\left< x-y \right> = 1+ \left< x \right> - \left< y \right>$.
In summary,
> For any two real numbers $x,y$, we have
> $$
\left< x-y \right> = \cases{\left< x \right> -\left< y \right> & if \(\left< x \right> \geq \left< y \right> \)\\1+ \left< x \right> -\left< y \right> & if \()\left< x \right> < \left< y \right> \) } .$$
## An equivalence to equidistribution.
Let $(x_{n})$ be any sequence, we claim the following
> **Lemma.**
> The sequence $(\left< x_{n} \right>)$ is equidistributed in $[0,1)$ if and only if for any real $t$, we have
> $$
\lim_{ N \to \infty } \frac{1}{N} \sum_{n=1}^{N} \left< x_{n} + t \right> - \left< x_{n} \right> = 0 .$$
$\blacktriangleright$ Proof.
Take any real $t$, and write $b = \left< -t \right>$. Notice that
$$
\left< x_{n} + t \right> =\left< x_{n} - (-t) \right>
$$
which equals $\left< x_{n} \right> - b$ if $\left< x_{n} \right> \ge b$, or $1 + \left< x_{n} \right> -b$ if otherwise.
Let us denote $A$ to be the set of indices $n \le N$ such that $\left< x_{n} \right> \ge b$ and let $B$ to be the set of indices $n \le N$ otherwise. So $A \cup B = \{1,\dots, N\}$.
Then
$$
\begin{eqnarray}
&& \frac{1}{N} \sum_{n=1}^N \left< x_{n} + t \right> \\
&=& \frac{1}{N} \sum_{n \in A} (\left< x_{n} \right> -b) + \frac{1}{N} \sum_{n \in B} (1+\left< x_{n} \right> - b) \\
&=& \left( \frac{1}{N} \sum_{n=1}^N \left< x_{n} \right> \right) -b + \frac{1}{N}\#\{n \le N : \left< x_{n} \right> < b \}.
\end{eqnarray}
$$
In other words, we get key equality for any real $t$ with $b = \left< -t \right>$,
$$
\begin{eqnarray}
&&\frac{1}{N} \sum_{n=1}^N \left< x_{n} + t \right> -\left< x_{n} \right> \\
&=& \frac{1}{N}\#\{n \le N : \left< x_{n} \right> < b \} -b .
\end{eqnarray}
$$
So, suppose for any real $t$ we have
$$
\lim_{ N \to \infty } \frac{1}{N} \sum_{n=1}^N \left< x_{n} + t \right> - \left< x_{n} \right> = 0.
$$
Take any $b \in [0,1)$ and set $t =- b$ so that $\left< -t \right> = \left< b \right> = b$. By the key equality we have
$$
\lim_{ N \to \infty } \frac{1}{N} \# \{n \le N : \left< x_{n} \right> < b\} = b.
$$
Conversely, suppose for any $b \in [0,1)$ we have
$$
\lim_{ N \to \infty } \frac{1}{N} \# \{n \le N : \left< x_{n} \right> < b \} = b.
$$
Then for any real $t$, set $b = \left< -t \right>$, and by the key equality we have
$$
\lim_{ N \to \infty } \frac{1}{N} \sum_{n=1}^N \left< x_{n} + t \right> -\left< x_{n} \right> =0.
$$
So we have as claimed. $\blacksquare$
## Proof of Weyl's equidistrubtion theorem.
???????
/